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1 Introduction

This document is intended to correct errors in and expand on Whiteman, David N., "Examination
of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols",
Applied Optics, 42, No. 15, 2593-26 (2003).

2 Corrections to Section 4.B: Aerosol Scattering Ratio - Formulation of the

Equations for Aerosol Scattering Ratio

On page 2600, equations 21 - 26 must be revised. The changes below correct the mistaken use
of the volume backscatter coefficient instead of the backscatter cross-section. Also, an algebraic
error was made in accounting for the ratio of Raman active molecules and the atmospheric number
density. The correct equations are listed below.

CN (λL = 351) ' 0.78 dσN (π) /dΩ (λL = 351)

dσmol (π) /dΩ (λL = 351)
' 0.782.9× 10

−30

3.3× 10−27 ' 6.9× 10
−4 (21)

CN (λL = 355) ' 0.78 dσN (π) /dΩ (λL = 355)

dσmol (π) /dΩ (λL = 355)
' 0.782.8× 10

−30

3.2× 10−27 ' 6.8× 10
−4 (22)

CN (λL = 532) ' 0.78 dσN (π) /dΩ (λL = 532)

dσmol (π) /dΩ (λL = 532)
' 0.784.6× 10

−31

6.3× 10−28 ' 5.7× 10
−4 (23)

CO (λL = 351) ' 0.21 dσO (π) /dΩ (λL = 351)

dσmol (π) /dΩ (λL = 351)
' 0.213.9× 10

−30

3.3× 10−27 ' 2.5× 10
−4 (24)

CO (λL = 355) ' 0.21 dσO (π) /dΩ (λL = 355)

dσmol (π) /dΩ (λL = 355)
' 0.213.7× 10

−30

3.2× 10−27 ' 2.4× 10
−4 (25)

CO (λL = 532) ' 0.21 dσO (π) /dΩ (λL = 532)

dσmol (π) /dΩ (λL = 532)
' 0.216.5× 10

−31

6.3× 10−28 ' 2.2× 10
−4 (26)
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3 Corrections to Section 4.F.1: Aerosol Scattering Ratio - Atmospheric

Calibration of the Aerosol Scattering Ratio - Effect of the Temperature-

Sensitivity Functions

The material provided below is intended to completely replace section 4.F.1 of the original paper.
This new material corrects errors relating to Fig. 9 and should help clarify the effects of the
temperature dependent factors. For reference Eqs. 3, 18, 19, 28 and 29 are repeated here.

FX(T ) =

R
∆λX

dσX
³
λ
0
, π, T

´
/dΩ ξ

³
λ
0
´
dλ

0

dσX (π) /dΩ ξ (λX)
(3)

P (∆λR, r)

P (∆λN , r)
=

OR (r)

ON (r)

ξ (λL)

ξ (λN)

FR(T (r))β
mol
π (λL, r) + βaerπ (λL, r)

FN(T (r))NN (r) dσN (π) /dΩ
∆τ (λL, λN , r) (18)

βNπ (λL, r) = CN βmol
π (λL, r) (19)

R (λL, r)− 1 = C∗N (λL, r)FN(T (r))
P (∆λL, r)

P (∆λN , r)
∆τ (λN , λL, r)− FR(T (r)) (28)

C∗N (λL, r) = CN (λL)
ON (r)

OR (r)

ξ (λN)

ξ (λL)
(29)

3.1 The Raman Lidar signals and the scattering ratio calculation

Before considering the ways in which the two temperature dependent factorsFR(T (r)) andFN(T (r))
influence the scattering ratio calculation, a review of the relationship of the Raman lidar signals
and the traditional scattering ratio calculation is provided.
Consider the ratio of the Rayleigh-Mie and Raman N2 signals in Eq. 18 with both of the

temperature dependent factors set equal to 1.0. One obtains

P (∆λR, r)

P (∆λN , r)
∝ βmol

π (λL, r) + βaerπ (λL, r)

NN (r) dσN (π) /dΩ
(41)

Making use of Eq. 19 this can be re-expressed as

P (∆λR, r)

P (∆λN , r)
∝ βmol

π (λL, r) + βaerπ (λL, r)

βmol
π (λL, r)

= R (42)

which is the traditional result. Now, for example, when βaerπ (λL, r) = 0, R = 1, which is the tra-
ditional clear-air normalization condition. When βaerπ (λL, r) = βmol

π (λL, r),R = 2; an indication
that aerosol and molecular scattering have the same magnitude. In the case of the modified equa-
tions that include the temperature dependent factors, the situation is a little more complicated but
quite analogous to this.
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Consider again Eqs. 18 and 19 but now including the temperature dependent factors. The
equation can be expressed as:

P (∆λR, r)

P (∆λN , r)
∝ FR(T (r))β

mol
π (λL, r) + βaerπ (λL, r)

FN(T (r))β
mol
π (λL, r)

6= R (43)

where it has been made explicit that this ratio does not now equal the aerosol scattering ratio. When
βaerπ (λL, r) = 0, the value of Eq. 43 is FR(T (r))/FN(T (r)), which, as will be shown, becomes
the new clear-air normalization value instead of 1.0 as in the case of Eq. 42. Before considering
the clear-air normalization procedure, example calculations of FR(T (r)) and FN(T (r)) will be
given.

3.2 Examples of the temperature dependent factors

Figures 1 and 2 illustrate the calculation of FR(T (r)) and FN(T (r)) for the case of 1.5 nm wide
Gaussian-shaped passbands that are centered on the Rayleigh and Raman N2 spectra, respectively.
On the left of figure 1, the filter passband is shown along with the pure rotational lines due to
molecular N2 and O2 that are plotted for temperatures of 180K and 260K. The location of the
Cabannes feature is also indicated. On the right is shown FR(T (r)) as a function of temperature.
Its value changes from ~0.982 to 0.987 over the 120K temperature range shown.
The comparable calculations for the Raman N2 case is shown in figure 2. On the left of figure

2, the filter passband is plotted along with the N2 rotational-vibrational lines for temperatures of
180K and 260K. The location of the N2 Q-branch feature is also indicated. On the right is shown
FN(T (r)) as a function of temperature. Its value changes from ~0.895 to 0.915 over the 120K
temperature range shown.

3.3 Clear-Air Normalization

The clear-air normalization process entails setting equation 28 equal to 0.0 in a region of the
atmosphere that is free of aerosols. This implies that the clear-air normalization condition is

C∗N (λL, r)
P (∆λL, r)

P (∆λN , r)
∆τ (λN , λL, r) =

FR(T (r))

FN(T (r))
(44)

as mentioned above. For the passbands illustrated in figures 1 and 2 and assuming the U.S. Stan-
dard Atmosphere temperature profile, the normalization vector FR(T (r))/FN(T (r)) is shown in
figure 3. The ratio FR(T (r))/FN(T (r)) varies from approximately 1.08 to 1.09 from the surface
to the tropopause.
In general, this ratio is approximately 8% greater than 1.0, which is the value used in the tra-

ditional clear-air normalization procedure. It may seem that this implies that, if the temperature
dependent factors are ignored, all subsequent calculations will use a molecular value in error by
this amount. If C∗N (λL, r) is evaluated from first principles, where, for example, the passband
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Figure 1: On the left is shown the pure rotational lines N2 and O2 at 180 K and 260 K. Also shown in a 1.5 nm Gaussian
passband centered on the Cabannes feature. The temperature dependent factor for Rayleigh-Mie channel that results
from this passband is shown on the right.
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Figure 2: On the left is shown the rotational-vibrational lines of Raman N2 at 180 K and 260 K. Also shown in a 1.5
nm Gaussian passband centered on the Q-branch. The temperature dependent factor for Raman N2 that results from
this passband is shown on the right.

Figure 3: The clear air normalization ratio, FR(T (r))/FN (T (r)), given in equation 44 plotted as a function of altitude
assuming the U.S. Standard Atmosphere.
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efficiencies have been determined through spectrally-resolved radiometric measurements, this is
indeed the case. However, the typical normalization procedure is to determine the value of a nor-
malization constant, one that in general is not equal to C∗N (λL, r), through the clear-air normal-
ization process. For the example being considered in figure 3, the normalization value that results
will differ from C∗N (λL, r) by exactly the ratio shown in the figure to make up for the fact that
FR(T (r))/FN(T (r)) does not equal 1.0. In other words, the clear-air normalization procedure
offers compensation for non-unity FR(T (r)) and FN(T (r)). Thus after clear-air normalization,
changes in the value of FR(T (r))/FN(T (r)) between the normalization altitude and some other
altitude where the scattering ratio is being caculated change the effective molecular normalization
value at this other altitude. The normalization procedure described here accounts for this height-
dependent molecular normalization. The separate effects of FR(T (r)) and FN(T (r)) on aerosol
scattering ratio calculations are quite different and will now be illustrated using Eqs. 43 and 28.

3.4 The separate effects of FR(T (r)) and FN(T (r))

We will consider the situation where narrow passbands are being used such that FR(T (r)) and
FN(T (r)) do not equal 1.0, but where the traditional approach is being followed and these fac-
tors are assumed to equal 1.0. In other words, it is assumed that Eq. 43 actually equals R.
Consider then that in the numerator of Eq. 43 βaerπ (λL, r) must increase from a value of 0 to a
value of FR(T (r))β

mol
π (λL, r) < βmol

π (λL, r) in order for the ratio to double. In the traditional
case, a doubling of this ratio would imply R = 2.0. However, in this case, due to the fact that
FR(T (r))β

mol
π (λL, r) < βmol

π (λL, r), a doubling of the value of Eq. 43 indicates that R < 2.0.
Thus accounting for the temperature dependent factor FR(T (r)) in the numerator implies that less
aerosol scattering is present than the traditional analysis would indicate. The fractional error is
independent of aerosol loading and is given by (1- FR(T (r))), which for the 1.5 nm passband il-
lustrated in figure 1 will equal ~1.2% (it can become as large as ~3% for narrower passbands) and
varies with altitude due to changes in temperature. The situation is quite similar to that of a High
Spectral Resolution Lidar where the rotational Raman lines are excluded40 from the measurement,
and a correction must be made for the excluded part of the cross section. (Given the definition
of FX in Eq. 3 it is actually possible for FR to exceed 1.0. This can occur for a passband that is
centered far from the Cabannes lines so that the transmission of the Cabannes lines is much less
than for certain rotational lines. That situation is not considered here. Instead we assume that the
passband is centered close to the Cabannes lines so that most of the signal transmitted is due to the
Cabannes lines.)
The influence of the term FN(T (r)) on the calculation of R can be seen most easily from Eq.

28. Here FN(T (r)) directly multiplies the ratio of lidar signals P (∆λL, r) /P (∆λN , r). Since
P (∆λL, r) gives the signal from both aerosols and molecules, changes in the value of FN(T (r))
will increase or decrease the apparent signal from both aerosols and molecules. Calculating the
aerosol backscatter coefficient from the aerosol scattering ratio (discussed in Section 4.G) requires
subtracting the molecular component of the signal from the scattering ratio. If FN(T (r)) is not
accounted for in the analysis, increasingly large errors can be made in this subtraction as the
amount of aerosols present decreases. The combined effects of the two temperature dependent
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Figure 4: Errors introduced in the calculation of the aerosol backscatter coefficient created by ignoring the tempera-
ture-dependent functions is explored here for 1.5 nm-wide Raman nitrogen and Rayleigh-Mie bandpasses. On the left
(black) is plotted a one-minute profile of aerosol scattering ratio calculated using the traditional techniques. In red is
shown the ratio of new to old aerosol backscatter coefficients where the new analysis takes account of the temperature
dependent factors discussed here and the old does not. The data shown in red on the left are reproduced on the right of
the figure but this time plotted versus traditional scattering ratio. For this choice of bandpass widths, the error in the
quantification of the backscatter coefficient exceeds 10% for all (traditional) scattering ratios less than ~1.1. Ignoring
the temperature dependent effects illustrated here will produce values of aerosol backscatter coefficient that are larger
than they should be.

factors will now be illustrated with real data.

On the left side of figure 4 and plotted in black is a one-minute profile of aerosol scattering
ratio calculated from Scanning Raman Lidar data using the traditional techniques represented by
Eqs. 41 and 42 where FR(T (r)) and FN(T (r)) have been assumed to equal 1.0. Plotted in
red is the ratio of βnew/βOld, where βnew is the aerosol backscatter coefficient calculated using
FR(T (r)) and FN(T (r)) shown in figures 1 and 2, respectively, and βOld is the aerosol backscatter
coefficient calculated using the traditional approach that assumes these factors equal 1.0. For both
calculations, a clear-air normalization was performed at approximately 9 km in altitude. The data
shown in red on the left are plotted again on the right side of figure 4, but this time as a function
of increasing (traditional) aerosol scattering ratio. The curve asymptotically approaches a non-
unity value of βnew/βOld for increasing traditional scattering ratio. The value of this asymptote
is FR(T (r)). For decreasing values of traditional scattering ratio, there is a sharp decrease in
the value of βnew/βOld. This is the effect of the changes in FN(T (r)) in the denominator of Eq.
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43. The value of FN(T (r)) is less in the boundary layer than at the normalization altitude of
9 km implying that the molecular reference has a lower value in the boundary layer. A smaller
molecular reference value implies that the same value of the ratio of Eq. 43 will actually imply
a smaller amount of aerosols. The error in the aerosol backscatter coefficient increases sharply as
the scattering ratio decreases. If the traditional techniques are used, the figure indicates that for a
scattering ratio of 1.1 (1.05), the calculated backscatter coefficient will be ~10% (~20%) too small
for this combination of passbands. This result implies that previous analyses of narrow spectral
band Raman lidar measurements of aerosol backscattering have a positive bias that increases as
aerosol loading decreases. The fractional error in the extinction-to-backscatter ratio will essentially
be the same.
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